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Noise of microstructural environments in late-stage phase coarsening
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Multiparticle diffusion equations were modeled to simulate the dynamics of late-stage phase coarsening in
the region of lower volume fractions. Local environmental information and particle interactions within each
coarsening ‘‘locale’’ are included in our simulations. These studies reveal that locale fluctuations occur in the
growth rates of particles due to their differing environments. Multiplicative noise provides a sound basis to
describe locale fluctuation in late-stage coarsening. A Fokker-Planck equation for the particle size distribution
and its asymptotic solution are obtained.
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Phase coarsening is a common relaxation process du
late-stage microstructural evolution that leads to a decre
in the excess total interfacial energy of two-phase syste
During phase coarsening, larger particles tend to grow
absorbing solute atoms at the expense of small particles
tend to dissolve by losing them. Over time, this ‘‘competiti
diffusion’’ results in an increase in theaveragesize of the
particle population, and in a concomitant decrease in
number density of particles. Indeed, the physical proper
of two-phase materials depend on the material’s average
ticle size and particle size distribution function~PSD!. The
theory of phase coarsening was initiated by Lifshitz a
Slyozov @1# and Wagner@2#. This theory is often referred to
as Lifshitz-Slyozov-Wagner~LSW! theory, and retains full
validity only in the limit of a vanishing volume fraction. Th
prediction of LSW theory that the cube of the average len
scale of particles increases linearly with time is shown to
valid even in the case of finite volume fractions by numero
experiments. The literature describing the evolution of tw
phase microstructures with nonzero volume fractions c
sists of several kinds of mean-field theories@3#. Recently,
Glicksman et al. @4# reviewed the interaction effects ex
pected among dispersed particles, and discussed how
multiparticle interactions influence the kinetics of pha
coarsening and broaden PSD. The PSD’s predicted f
mean-field theories are narrower than those observed in
periments@5#.

LSW theory and mean-field theories, in general, pred
that particles with identical size have the same growth ra
regardless of their location and environment in a microstr
ture. Experiments@6#, however, clearly show the presence
fluctuations indicating that particles of same size exhibit d
ferent growth rates. Rogerset al. @7# found that some par
ticles larger than their nearest neighbors shrank in their
periment, and suggested that growth rates of individ
particles depend not only on their size, but also on the de
of the local environment. Fluctuations during phase coars
ing were first demonstrated by Voorhees and Glicksm
simulations@8#. Wanget al. @9# then developed a stochast
analytic model of coarsening that employed a Fokker-Pla
equation~FPE! to estimate the PSD. Marsh and Glicksm
@10# have briefly discussed the issue of microstructure fl
tuations. Recently, Pande and Rajagopal@11# analyzed grain
growth and phase coarsening using a stochastic appro
1063-651X/2003/68~5!/051501~4!/$20.00 68 0515
ng
se
s.
y
at

e
s

ar-

d

h
e
s
-
-

ch

m
x-

t
s,
-

-

x-
l

ils
n-
n

k

-

ch.

Different fluctuation terms were assumed to operate in R
@9# and@11# and, consequently, these studies yielded differ
types of FPEs. Nonetheless, scant attention has as yet
paid to studying the character and strength of the fluctuati
arising from the influence of ‘‘locales’’ or individual micro
structural environments of the surrounding particles. Mo
over, a broadly accepted stochastic theory of phase coar
ing is not currently available. In this paper, we u
multiparticle diffusion to simulate the coarsening proce
study the character of the fluctuations, and suggest a stoc
tic theory for the coarsening analysis.

The two-phase coarsening system consists ofn polydis-
perse spherical precipitates suspended throughout a th
dimensional matrix. Some additional simplifying assum
tions are needed:~1! the kinetics of coarsening is determine
solely by volume diffusion through the matrix; and~2! the
diffusion transport to or from each phase domain occ
slowly enough to be considered quasistatic. These assu
tions justify approximating the diffusion equation wit
Laplace’s equation to describe the concentration fields, in
matrix, ¹2C(r )50, whereC(r )[@c(r )2c0#/c0 defines a di-
mensionless diffusion potential;c(r ) is the concentration a
any field point defined by the position vectorr , andc0 de-
notes the equilibrium solubility at a flat interface between
matrix and particle phases. The boundary conditions at
spherical interface of thei th particle are specified throug
the Gibbs-Thomson local equilibrium solubility relation
namely,C(Ri)51/Ri , whereRi is the radius of thei th par-
ticle scaled by the capillary length@17#.

The solution to Laplace’s equation forn particles may be
represented as the superposition ofn dimensionless concen
tration fields summed over the system of particles, name

C~r !5(
i 51

n
Bi

ur2r iu
1C` , ~1!

wherer i is a vector that locates the center of thei th particle
in the microstructure. Thei th particle’s total volume flux
4pBi and the far-field potentialC` comprise n11 un-
knowns. The microstructure’s global mass conservation
for a discrete system consisting ofn spherical particles may
be expressed through the volume fluxes as( i 51

n Bi50. Us-
ing Eq.~1! along with the mass conservation law, one obta
after a few steps of algebra
©2003 The American Physical Society01-1
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C`5
1

^R&
2

1

n^R& (
k51

n

Bk(
j Þk

n
Rj

r jk
, ~2!

wherer jk is the distance between the centers of any pai
particlesj andk, and^R& is the average radius. The relatio
ship for the far-field potential, Eq.~2!, expresses microstruc
ture responses that include interactions among particles.
finite system, Eq.~2! clearly demonstrates that the far-fie
potential C` depends explicitly onlocale information con-
cerning particle positions and the distances between par
pairs. Moreover, Eq.~2! includes enough detailed environ
mental information to describe the locale of every partic
and, most importantly, its subtle influence on the particl
diffusion-limited growth or shrinkage.

Weins and Cahn@12# were the first to use a few particle
to simulate discrete coarsening events. Then Voorhees
Glicksman @8# used several hundred particles to simula
phase coarsening. Later, Beenakker@13# further improved
multiparticle simulation procedures and incorporated sev
thousand particles in his simulation. More recently, oth
@14–18# have continued to improve upon large-scale ac
rate simulations of phase coarsening processes. Phase c
ening kinetics is simulated by placingn particles of the dis-
persoid phase within a cubic simulation box. The contiguo
spaces between the particles represent the matrix pha
which the dispersoid population is embedded. Particles
located by specifying the positions of their centers and
their radii. The dimensionless form of the growth rate of t
i th particle can be written as

dRi

dt
52

Bi

Ri
2 ~ i 51,2, . . . ,n!, ~3!

whereRi is known at the evolution timet. The time is non-
dimensionalized by a characteristic diffusion time@17#. The
Runge-Kutta method was used to integrate the growth
numerically. Substituting Eq.~1! into Gibbs-Thomson condi
tion for n particles, one obtains a system of linear equatio
which may be cast into matrix form as

A8•B85U8, ~4!

whereA8, B8, andU8 are, respectively,n3n, n31, andn
31 matrices. These matrices can be found in our paper@17#.
The Gauss-Seidel method was employed to solve this sys
of linear equations, Eq.~4!, yielding at each time step value
for the Bi ’s. Substitution of the updatedBi ’s back into Eq.
~3! dynamically advances the coarsening by updating the
dii of all the particles and their coordinates at any time st

We simulated microstructures with dispersoid volum
fractionsVV51024, VV51023, VV51022, andVV51021.
Typical microstructure cross sections of these simulated t
phase coarsening system are shown in Figs. 1~a! and 1~b!.
Specifically, Figs. 1~a! and 1~b! are planar cross section
taken through a simulated evolving microstructure, the v
ume fraction for which is 0.1. Comparison of these cro
sections clearly shows the process of phase coarsening
gressing, as the small particles shrink and large parti
grow, and their overall number density decreases. What s
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to be small ‘‘new’’ particles appearing in Fig. 1~b! is just the
three-dimensional effect of some particles which were
yond the plane of view in Fig. 1~a! growing and intersecting
with the cross section shown in Fig. 1~b!.

LSW theory and mean-field models predict that partic
with identical sizes have thesamevolume fluxes, regardles
of their locations within the microstructure. By contrast, o
simulations reveal that the volume fluxes of the particles
different, even for particles with the same radii, since th
are located in different microstructural environments. Figu
2 shows the volume fluxesB(r) simulated forVV51021,
wherer is the normalized radiusR/^R&. For comparison, the
average trend of the volume fluxes@4# has been shown ana
lytically to be B(r)5(12r)(11r/r0). Herer0 is the nor-
malized Debye diffusion length r0[R0 /^R&
5A^r3&/(3^r&VV) @4#. The volume fluxes in LSW theory
B(r)512r, is also plotted in Fig. 2. The plot demonstrat
that the average volume flux functions with particle-partic
interactions steadily deviate from the linear-mean-field LS
prediction that lacks interactions. The nonlinear characte

FIG. 1. The microstructures of the simulating system~a! initial
state, computer timet50, and~b! t50.375. The particles are blac
and the matrix is white.
1-2
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the particle volume flux versus particle size increa
steadily with increasing volume fraction. Moreover, partic
of identical size exhibit a range ofBi values. It means tha
growth rates of particles with identical size are different a
deviate from that of our mean-field prediction. In fact, due
local variations of concentration of particles with identic
size, the growth rates are not exactly equal to the m
value. Experimental results@6,7# also confirmed these effec
We use ‘‘locale noise’’ or ‘‘locale fluctuation’’ to describe th
effect of local variations of concentration of particles wi
identical size. However, here the ‘‘locale noise’’ is differe
from thermal noise. The locale noise is from the local var
tions of concentration of particles with identical size, i.
from different environments of particles of identical size.
is not related to thermal noise at all.

Of particular interest is to note that particles, particula
those close to the average size, actually behave unpre
ably, by sometimes growing or dissolving rapidly. To reite
ate, were these critically sized particles to act in a determ
istic, mean-field manner, they would neither grow nor shri
Our simulations also show that the strength of locale no
for the volume fluxes increases with increasing volume fr
tion. In addition, we found that larger particles experien
stronger locale noise in their growth rates than do the sma
particles. The dispersion of locale noise with particle size
caused by the spatial localization of the diffusion field s
rounding small particles. This observation suggests that th
fluctuations are correlated with the size of a particle and w
the volume fraction of the microstructure. In order to clar
the nature of locale noise found in these simulations,
recently developed estimates of the expected noise band
ing statistical sampling theory. The expected variance fr
the mean value in a smaller volume of sample is proportio

ρ

ρ

FIG. 2. Volume fluxB(r) versus scaled particle radiusr. Data
are from simulations atVV50.1.
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to 1/ANs, whereNs is the number of volume points sample
The number of volume points is proportional to the volum
of a spherical shell representative of the local environm
surrounding the particle of interest. We derived the followi
expression for the locale noise of the particle volume flux

zS r

r0
D5

r

2r0
S 11

r

r0
Dh. ~5!

Hereh is a Gaussian random variable with mean value z
and unit width, andz(r/r0) is the Gaussian multiplicative
noise. In Fig. 2, all the simulation data are scattered betw
bands of the multiplicative noise, showing that Gauss
multiplicative noise provides a reasonable match with
simulations.

Considering that there exists a spectrum of fluctuations
the volume fluxes, one must consider adding a multiplicat
noise term to the growth rate@4#. The resulting expression
for a particle’s growth rate is

dR

dt
5

1

R S 1

R*
2

1

RD S 11
R

R0
D1

1

2R0
S 1

R
1

1

R0
Dh. ~6!

Equation~6!, a stochastic differential equation, provides t
kinetic law for particles in a ‘‘noisy’’ microstructure. The
governing equation for the PSD associated with Eq.~6! is an
FPE, rather than the continuity equation used in mean-fi
theories. First, we introduce new scaled variables as follo
u5R/R0 ,dt5dt/R* 3, and the constantK5dV* /dt is the
rate constant describing the growth rate of the critical v
umeV* . Using Stratonovich’s calculus for stochastic diffe
ential equations, one can show that the FPE associated
Eq. ~6! is

]F~u,t!

]t
52

]

]u
D1~u!F~u,t!1

]2

]u2
D2~u!F~u,t!, ~7!

where D1(u)5@2(u21/r0)/r0
2u2#(11u)2(1/4r0

6u3)(1
1u)2Ku andD2(u)5(1/4r0

6u2)(11u)2. F(u,t)du is the
number of particles per unit volume, the scaled sizes
which are betweenu and u1du at time t. In the case of
LSW theory, the volume fraction vanishes, sor0→`, and
Eq. ~7! reduces to the standard continuity equation. Beca
the particles attain a nonzero size at large times, there e
the natural boundary conditionF(0,t)50 for Eq. ~7!. In
addition, the volume fraction constraint over the dispers
phase in three dimensions may be expressed
*0

`u3F(u,t)du53VV/4pR0
3.

According to the hypothesis of statistical self-similarity
microstructural evolution@19#, F(u,t) can be recast in a
product function form, namely,F(u,t)5F0(u)H(t). Here
F0(u) is the time-independent, scaled PSD. The funct
H(t) is the explicit time-dependent portion of the PSD th
specifies the temporal behavior. After some involved cal
lation @20#, Eq. ~7! can be rewritten as

d2F0~u!

du2
1p~u!

dF0~u!

du
1q~u!F0~u!50, ~8!
1-3
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where

p~u!5
4r0

6Ku3

~11u!2
2

318r0
4u~u21/r0!

u~11u!

and

q~u!5
31~2216r0

3!u18r0
4~121/r0!u218Ku4

u2~11u!2

1
4r0

6Ku2

~11u!2
.

Consideringu!1, keeping the first order ofu in p(u) and
q(u), and using the method of series expansion, we
obtain the solution of Eq.~8! as

F0~u!5u3(
n50

`

anun, ~9!

where the coefficients are

an5
7124r0

32~8r0
313!~n13!

~n13!~n21!13
an21 .

The coefficienta0 is a normalized constant ofF0(u) given as
*0

`F0(u)du51. One can see how the interaction and flu
tuation effects influence the scaled PSD throughr0. To our
knowledge, this is the first time that explicit effects of inte
actions and fluctuations are introduced to the scaled P
Most experimental observations and computer simulation
coarsening kinetics present the PSD in terms of normali
particle radii, asg(r). It can be obtained via the transform
tion g(r)5F0(u)/r0. We calculatedg(r), for the case of
VV50.12, in accordane with Eq.~9!. Figure 3 shows the
PSDs obtained from the FPE with noise and from mean-fi
theory without noise@4#. Clearly, the addition of microstruc
tural locale noise broadens the PSD.

In summary, we simulated microstructure evolution in
two-phase system by solving the discrete multiparticle dif
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