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Noise of microstructural environments in late-stage phase coarsening
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Multiparticle diffusion equations were modeled to simulate the dynamics of late-stage phase coarsening in
the region of lower volume fractions. Local environmental information and particle interactions within each
coarsening “locale” are included in our simulations. These studies reveal that locale fluctuations occur in the
growth rates of particles due to their differing environments. Multiplicative noise provides a sound basis to
describe locale fluctuation in late-stage coarsening. A Fokker-Planck equation for the particle size distribution
and its asymptotic solution are obtained.
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Phase coarsening is a common relaxation process durirgifferent fluctuation terms were assumed to operate in Refs.
late-stage microstructural evolution that leads to a decread®] and[11] and, consequently, these studies yielded different
in the excess total interfacial energy of two-phase systemdypes of FPEs. Nonetheless, scant attention has as yet been
During phase coarsening, larger particles tend to grow byaid to studying the character and strength of the fluctuations
absorbing solute atoms at the expense of small particles thafising from the influence of “locales” or individual micro-
tend to dissolve by losing them. Over time, this “competitive Structural environments of the surrounding particles. More-
diffusion” results in an increase in thaveragesize of the Over, a broadly accepted stochastic theory of phase coarsen-
particle population, and in a concomitant decrease in théd is not currently available. In this paper, we use
number density of particles. Indeed, the physical propertie§ultiparticle diffusion to simulate the coarsening process,
of two-phase materials depend on the material's average pagudy the character of the.ﬂuctuatlor}s, and suggest a stochas-
ticle size and particle size distribution functiéRSD. The tic theory for the coarsening analysis.
theory of phase coarsening was initiated by Lifshitz and The two-phase coarsening system consists pblydis-
Slyozov[1] and Wagnef2]. This theory is often referred to Perse spherical precipitates suspended throughout a three-
as Lifshitz-Slyozov-WagnetLSW) theory, and retains full dimensional matrix. Some additional simplifying assump-
validity only in the limit of a vanishing volume fraction. The tions are needed1) the kinetics of coarsening is determined
prediction of LSW theory that the cube of the average lengttfolely by volume diffusion through the matrix; ai@) the
scale of particles increases linearly with time is shown to beliffusion transport to or from each phase domain occurs
valid even in the case of finite volume fractions by numerousslowly enough to be considered quasistatic. These assump-
experiments. The literature describing the evolution of two-tions justify approximating the diffusion equation with
phase microstructures with nonzero volume fractions conlkaplace’s equation to describe the concentration fields, in the
sists of several kinds of mean-field theori@. Recently, ~matrix, V2C(r)=0, whereC(r)=[c(r) —co]/c, defines a di-
Glicksman et al. [4] reviewed the interaction effects ex- mensionless diffusion potentiad(r) is the concentration at
pected among dispersed particles, and discussed how su@hy field point defined by the position vectarandc, de-
multiparticle interactions influence the kinetics of phasenotes the equilibrium solubility at a flat interface between the
coarsening and broaden PSD. The PSD’s predicted froffatrix and particle phases. The boundary conditions at the
mean-field theories are narrower than those observed in egpherical interface of théth particle are specified through
perimentg5]. the Gibbs-Thomson local equilibrium solubility relation,

LSW theory and mean-field theories, in general, predicnamely,C(R)) =1/R;, whereR; is the radius of theth par-
that particles with identical size have the same growth ratedicle scaled by the capillary leng{ii7].
regardless of their location and environment in a microstruc- The solution to Laplace’s equation farparticles may be
ture. Experiment§6], however, clearly show the presence of represented as the superpositiomalimensionless concen-
fluctuations indicating that particles of same size exhibit dif-tration fields summed over the system of particles, namely,
ferent growth rates. Rogeet al. [7] found that some par- N
ticles larger than their nearest neighbors shrank in their ex- =3 Bi i &
periment, and suggested that growth rates of individual Sr-r T
particles depend not only on their size, but also on the details
of the local environment. Fluctuations during phase coarserwherer; is a vector that locates the center of il particle
ing were first demonstrated by Voorhees and Glicksmarn the microstructure. Theth particle’s total volume flux
simulations[8]. Wanget al. [9] then developed a stochastic 4wB; and the far-field potential,. comprisen+1 un-
analytic model of coarsening that employed a Fokker-Plancknowns. The microstructure’s global mass conservation law
equation(FPB to estimate the PSD. Marsh and Glicksmanfor a discrete system consisting wfspherical particles may
[10] have briefly discussed the issue of microstructure fluche expressed through the volume fluxesSds,B;=0. Us-
tuations. Recently, Pande and Rajagdgddl analyzed grain ing Eq.(1) along with the mass conservation law, one obtains
growth and phase coarsening using a stochastic approachfter a few steps of algebra
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wherer, is the distance between the centers of any pair of 1
particlesj andk, and(R) is the average radius. The relation- 20k i
ship for the far-field potential, Eq2), expresses microstruc- ¢
ture responses that include interactions among particles. For | d °
finite system, Eq(2) clearly demonstrates that the far-field > 1 e, ®
potential C,, depends explicitly orlocale information con- - ] °
cerning particle positions and the distances between particle w0l ®
pairs. Moreover, Eq(2) includes enough detailed environ- p °
mental information to describe the locale of every particle, . °
and, most importantly, its subtle influence on the particle’s
diffusion-limited growth or shrinkage. I i
Weins and Cahfl2] were the first to use a few particles ob— . 1 L0
to simulate discrete coarsening events. Then Voorhees and 0 > w0 s 30
Glicksman[8] used several hundred particles to simulate X
phase coarsening. Later, Beenakk&8] further improved
multiparticle simulation procedures and incorporated several T o)
thousand particles in his simulation. More recently, others - ° 1
[14-18 have continued to improve upon large-scale accu- 25 b P i
rate simulations of phase coarsening processes. Phase coars- I °
ening kinetics is simulated by placingparticles of the dis-
persoid phase within a cubic simulation box. The contiguous °
spaces between the particles represent the matrix phase in I .
which the dispersoid population is embedded. Particles are 15 | o .
located by specifying the positions of their centers and by | @ o ¢
their radii. The dimensionless form of the growth rate of the . °

: . . 10 | .
ith particle can be written as o ° )

dR,_ B ° ]
W__Q (i=1,2,...n), 3 I ° .

whereR; is known at the evolution timé The time is non- 0 5 10 15 20 25 30
dimensionalized by a characteristic diffusion tifii&’]. The X

Runge-Kutta method was used to integrate the growth rate F|G. 1. The microstructures of the simulating syste@ninitial
numerically. Substituting Eq1) into Gibbs-Thomson condi-  state, computer time=0, and(b) t=0.375. The particles are black
tion for n particles, one obtains a system of linear equationsand the matrix is white.

which may be cast into matrix form as ) o o
to be small “new” particles appearing in Fig(l) is just the

A'-B'=U’, (4)  three-dimensional effect of some particles which were be-
yond the plane of view in Fig.(&) growing and intersecting
whereA’, B’, andU’ are, respectivelypxn, nxX1, andn  with the cross section shown in Fig(hl.
X1 matrices. These matrices can be found in our ppAr LSW theory and mean-field models predict that particles
The Gauss-Seidel method was employed to solve this systewith identical sizes have theamevolume fluxes, regardless
of linear equations, Ed4), yielding at each time step values of their locations within the microstructure. By contrast, our
for the B;’s. Substitution of the updateB;’s back into Eq. simulations reveal that the volume fluxes of the particles are
(3) dynamically advances the coarsening by updating the redifferent, even for particles with the same radii, since they
dii of all the particles and their coordinates at any time stepare located in different microstructural environments. Figure
We simulated microstructures with dispersoid volume2 shows the volume fluxeB(p) simulated forV,=10"1,
fractionsVy=10"*, V=103, V=102, andV,=10"1.  wherep is the normalized radiug/(R). For comparison, the
Typical microstructure cross sections of these simulated twoaverage trend of the volume fluxpé| has been shown ana-
phase coarsening system are shown in Figa) and 1b). lytically to be B(p)=(1—p)(1+p/pg). Herepg is the nor-
Specifically, Figs. (a) and Xb) are planar cross sections malized Debye diffusion length po=Ry/(R)
taken through a simulated evolving microstructure, the vol-=\/{p3)/(3(p)Vy) [4]. The volume fluxes in LSW theory,
ume fraction for which is 0.1. Comparison of these crossB(p)=1—p, is also plotted in Fig. 2. The plot demonstrates
sections clearly shows the process of phase coarsening priivat the average volume flux functions with particle-particle
gressing, as the small particles shrink and large particlemteractions steadily deviate from the linear-mean-field LSW
grow, and their overall number density decreases. What seeprediction that lacks interactions. The nonlinear character of
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R eSqua - - - - - - to 1/JNg, whereNj is the number of volume points sampled.
08 | RN ] The number of volume points is proportional to the volume
' Sl of a spherical shell representative of the local environment
surrounding the particle of interest. We derived the following
expression for the locale noise of the particle volume flux,
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= . Here  is a Gaussian random variable with mean value zero
o 02 N and unit width, and(p/p,) is the Gaussian multiplicative
E o4 noise. In Fig. 2, all the simulation data are scattered between
E [~ V10" smutaton - bands of the multiplicative noise, showing that Gaussian
2 06 "—A\v/erage\{olumg Flux N N multiplicative noise provides a reasonable match with the
P st B AN M simulations. | o
| LSW Vo Considering that there exists a spectrum of fluctuations in
10 N the volume fluxes, one must consider adding a multiplicative
- \ noise term to the growth rafel]. The resulting expression
12 N for a particle’s growth rate is
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ormezed radlis p Equation(6), a stochastic differential equation, provides the

kinetic law for particles in a “noisy” microstructure. The
governing equation for the PSD associated with ®gis an
the particle volume flux versus particle size increased PE, rather than the continuity equation used in mean-field
steadily with increasing volume fraction. Moreover, particlestheor'es- First, we w;troduce new scaled variables as follows:
of identical size exhibit a range @&, values. It means that U=R/Ro,d7=dt/R*", and the constark=dV*/dt is the
growth rates of particles with identical size are different andraté constant describing the growth rate of the critical vol-
deviate from that of our mean-field prediction. In fact, due toUmeV*. Using Stratonovich’s calculus for stochastic differ-
local variations of concentration of particles with identical €ntial equations, one can show that the FPE associated with
size, the growth rates are not exactly equal to the meafd- (6) is
value. Experimental resul{§,7] also confirmed these effect. JF 2
. T - . (u,7) d d

We use “locale noise” or “locale fluctuation” to describe the =——D;(u)F(u,7)+ —Dy(U)F(u,7), (7)
effect of local variations of concentration of particles with ar au au?
identical size. However, here the “locale noise” is different
from thermal noise. The locale noise is from the local varia-where Dl(u)=[2(u—1/p0)/p§u2](1+ u)—(1/4p8u3)(1
tions of concentration of particles with identical size, i.e., +u)—Ku andD,(u)=(1/4p5u?)(1+u)?. F(u,7)du is the
from different environments of particles of identical size. It number of particles per unit volume, the scaled sizes of
is not related to thermal noise at all. which are betweem and u+du at time 7. In the case of

Of particular interest is to note that particles, particularly_Sw theory, the volume fraction vanishes, gg—, and
those close to the average size, actually behave unpredigty. (7) reduces to the standard continuity equation. Because
ably, by sometimes growing or dissolving rapidly. To reiter- the particles attain a nonzero size at large times, there exists
ate, were these critically sized particles to act in a determinthe natural boundary conditioR(0,7)=0 for Eq. (7). In
istic, mean-field manner, they would neither grow nor shrink.addition, the volume fraction constraint over the dispersed
Our simulations also show that the strength of locale noisghase in three dimensions may be expressed as
for the volume fluxes increases with increasing volume frac%,3F (u, r)du=3V,/47RS.

tion. In addition, we found that larger particles experience ~ According to the hypothesis of statistical self-similarity in
stronger locale noise in their growth rates than do the smallegicrostructural evolutior{19], F(u,7) can be recast in a
particles. The dispersion of locale noise with particle size isproduct function form, namelyE(u,7)=Fo(u)H(7). Here
caused by the spatial localization of the diffusion field SUr-E (u) is the time-independent, scaled PSD. The function
rounding small particles. This observation suggests that theqq(T) is the explicit time-dependent portion of the PSD that

fluctuations are correlated with the size of a particle and Wm’kpecifies the temporal behavior. After some involved calcu-
the volume fraction of the microstructure. In order to clarify |5tion [20], Eq. (7) can be rewritten as

the nature of locale noise found in these simulations, we

recently developed estimates of the expected noise bands us- d2Fo(u) dFo(u)
ing statistical sampling theory. The expected variance from 7 (u) 0
the mean value in a smaller volume of sample is proportional du? du

FIG. 2. Volume fluxB(p) versus scaled particle radips Data
are from simulations a¥,,=0.1.

+a(u)Fo(u)=0, ®
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where 2
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Consideringu<1, keeping the first order af in p(u) and P
g(u), and using the method of series expansion, we can FIG. 3. PSDs are obtained with and without stochastic effect,
obtain the solution of Eq(8) as respectively, av/,,=0.12.
Fo(u)= u32 apu", 9) sion equation for many interacting particles near steady state.
n=0

Our simulations show that there exist locale fluctuations in
the growth rate of particles during microstructure evolution,
for both sparse finite microstructure¥\(=10 %) and mod-
7+24p3— (8p3+3)(n+3) erately dense ones/(;=0.1). Simulations and Eq5) indi-
a,= an_1- cate that larger particles experience stronger locale fluctua-
(n+3)(n—=1)+3 . . .
tions than do smaller ones, and systems with higher volume
fractions experience stronger locale fluctuations than do sys-
JZFo(u)du=1. One can see how the interaction and fluc-tems with lower ones. We found that locale fluctuations can

tuation effects influence the scaled PSD thropghTo our ~ P€ described approximately by muitiplicative Gaussian
knowledge, this is the first time that explicit effects of inter- N°IS€, a finding which is also supported by these simulations.
actions and fluctuations are introduced to the scaled PSDVe then derived stochastic kinetic equation describing the
Most experimental observations and computer simulations gdfowth rate of interacting particles, in distinction with deter-
coarsening kinetics present the PSD in terms of normalizedinistic kinetics found in conventional coarsening theory.
particle radii, agy(p). It can be obtained via the transforma- The FPE associated with the stochastic aspects of micro-
tion g(p)=Fo(u)/po. We calculatedy(p), for the case of structural coarsening is presented, and an asymptotic solu-
V,=0.12, in accordane with Eq9). Figure 3 shows the tion to this FPE was found. Clear evidence is shown for the
PSDs obtained from the FPE with noise and from mean-fieldact that the locale noise broadens the PSD.
theory without nois¢4]. Clearly, the addition of microstruc-
tural locale noise broadens the PSD.

In summary, we simulated microstructure evolution in a
two-phase system by solving the discrete multiparticle diffu-

where the coefficients are

The coefficientg is a normalized constant &, (u) given as
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